REHYDRATION

The photochemistry of certain resists requires water in the resist film during exposure as an indispensable precursor, but this is not available in sufficient quantities immediately after the softbake. This chapter describes the required water resumption known as rehydration of the resist film by its purpose, implementation and the possible consequences of inadequate rehydration.

Chemical and Physical Processes in the Resist Film

The Role of Water in the Photoreaction

Photoresists with a photoinitiator based on DNQ-sulphonates such as almost all AZ® and TI positive and image reversal resists, except for certain chemically amplified resists such as the AZ® 40 XT, require a certain minimum concentration of water of a few per thousand during exposure for the photoreaction. However, after the softbake water is not present in sufficient quantity in the resist film and must be fed back to it via the rehydration in order to give the subsequently exposed areas a sufficiently high development rate.

Process of Rehydration

The source of the water for rehydration is the atmosphere in the clean room, which at room temperature contains some 10 g of water per m³ depending on the relative humidity.

The diffusion of the water molecules adsorbed onto the resist surface into the resist film ultimately leads to a uniform water concentration between the resist surface and the substrate.

As a diffusion-limiting process, the time required for this quadratically increases with the resist film thickness. The homogeneous water concentration attained after the theoretically arbitrary length of time depends on the air humidity above the resist film.

Effects of Insufficient Rehydration

Fig. 74 shows how strong the entire development time increases in the case of insufficient rehydration based on a 22 µm AZ® 9260 film:

If the delay between the softbake and exposure is too short, the entire development requires more than two hours. A wait time of 10 minutes in contrast, is adequate for the entire water absorption over the entire resist film thickness for a sufficiently short development time.

Fig. 73 confirms, based on the time-resolved determined development rate of the same 22 µm AZ® 9260 resist film, that the rehydration is in fact a diffusion process of water molecules starting from the resist surface: After only five minutes of rehydration, only the upper resist films can be developed.

Fig. 74: A too short rehydration leaves virtually water-free substrate near resist areas and increases the necessary time for the development by many orders of magnitude.

Fig. 73: The time-resolved developed depth of two differently long rehydrated photoresist films
rapidly, after which the development rate in the areas near the substrate which are still free of H$_2$O decreases strongly (blue graph). With a sufficient waiting time between softbake and exposure, the film develops uniformly at a sufficiently high rate (black graph).

Conditions for Sufficient Rehydration

The Time

The time it takes until a sufficient amount of water molecules is diffused through the resist film to the substrate mainly depends on the resist film thickness at a given temperature. Fig. 75 represents the results of a numerical simulation of the diffusion process on differently thick resist films in a time-resolved manner, whereby the still water-free resist is shown in red and after complete rehydration, in blue. While a 1 µm thick resist film is sufficiently rehydrated after only a few seconds, a 7 µm thick film requires one minute, and several 10 µm thick resist films require several hours.

The Humidity

The air humidity at the location of the resist-coated substrates determines the level at which the water concentration adjusts in the resist film after an arbitrary waiting time. Even after several hours in air, also thin resist films do not rehydrate when it is too dry in the clean room, since the balance between water absorption and evaporation is at a too low level.

We recommend a relative humidity of 40 - 50% for a sufficient rehydration. Lower values lead to a significant drop in the development rate, while higher values can hardly further improve the rehydration, but can lead to a worsening of the resist adhesion by accelerated adsorption of water to the substrate surface before resist coating takes place.

The rehydration should never take place in a saturated water vapour atmosphere or directly in water. Here, the resist film is so saturated with water that it can lead to severe bubbling during subsequent exposure through the nitrogen thereby formed.

Fig. 75: The rehydration time to attain an equilibrium water concentration in the resist is diffusion-limited and increases quadratically with the film thickness.
If the rehydration is carried out in a different (moister) room than the following exposure, it must be noted that the resist film loses water as quickly as it has absorbed during the rehydration on the way to the exposure tool. Especially in the case of thin resist films, the air humidity at the site of the exposure tool determines the extent of the rehydration and the later development result.

The Temperature

Higher temperatures accelerate the process of thermally activated diffusion and thus shorten the time within which the water molecules diffuse through the resist film to the substrate. On the other hand, higher temperatures promote the evaporation rate of water from the resist film which reduces the final water concentration.

Rehydration of Thick Photoresist Films

Thin and Thick Photoresist Films

The basic necessity of rehydration does not depend on the resist film thickness; but with thin resist films of only a few μm, a mechanism that is hardly dominant in the process sequence for various reasons:

On the one hand, the necessary time for the rehydration of thin resist films with less than one minute is a time which is usually applied between the softbake and exposure. On the other hand, thin resists usually have a significantly higher concentration of photoinitiator than thick resist and therefore develop notably more rapidly, additionally faster due to the lower resist film thickness.

Consequences of Insufficient Rehydration in the Case of Thick Resists on the Resist Profile

Fig. 76 shows the effect of missing or too short rehydration on the developed resist profile. While the development rate between the resist surface and the substrate depends on the depth profile of the water concentration before the exposure, the dark erosion which is independent of it, contributes both laterally and vertically to the unexposed resist.

The higher the development rate up to the substrate, that is, the more complete the rehydration, the more steep resist sidewalls are possible. If, due to a too short waiting time between the softbake and exposure, only the upper resist areas are adequately rehydrated, the resist film will develop slower and slower in depth, that is, the upper resist areas are exposed to the dark erosion for a disproportionate time.

Measures for the Rehydration of Thick Photoresist Films

As represented in Fig. 75, thick resist films of several 10 μm require rehydration times of several hours which are hardly practical.

A higher humidity does not change the duration of the diffusion of the water molecules from the resist

Fig. 76: A numerical simulation of the chronological sequence of the development of positive resist films which are differently rehydrated.

Left: Inclined resist sidewalls from a constantly low development rate due to air which is too dry or missing rehydration.

Centre: Steep resist sidewalls from a constantly high development rate due to sufficiently long rehydration with sufficient humidity.

Right: A tub-shaped profile from an initially high development rate which continues to diminish due to a too short rehydration with sufficient humidity.
surface to the substrate. A higher exposure dose is useless if the photoreaction lacks sufficient water. A sharper developer concentration shortens the duration of the development of insufficiently rehydrated photoresist films, but increases the dark erosion (see Fig. 97 on page 91) disproportionately strongly and thus further deteriorates the resist profile attained.

For photoresist films of several 10 μm resist thickness or more, resists with a photochemistry independent of a rehydration such as the AZ® 40 XT are recommended for films between about 15 and 100 μm.
Our Photoresists: Application Areas and Compatibilities

Recommended Applications

<table>
<thead>
<tr>
<th>Resist Family</th>
<th>Recommended Developers</th>
<th>Recommended Removers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ® 1500</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>AZ® 100 Remover, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 1512 HS</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 1514 H</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 1518</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 4500</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 4533</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 4562</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 4500</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® P4110</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® P4330</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® P4620</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® P4903</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® PL 177</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
<tr>
<td>AZ® 4999</td>
<td>AZ® 351B, AZ® 326 MIF, AZ® 726 MIF, AZ® 826 MIF</td>
<td>TechniStrip® Micro D2, TechniStrip® P1316, TechniStrip® P1331</td>
</tr>
</tbody>
</table>

Recommended Developers

- **Positive Developers**
 - AZ® ECi 3000, AZ® ECi 3012, AZ® ECi 3027
 - AZ® 9200, AZ® 9245, AZ® 9260
 - AZ® 701 MR (14 cPs), AZ® 701 MR (29 cPs)
- **Negative Developers**
 - AZ® 12 XT-20PL-05, AZ® 12 XT-20PL-10, AZ® 12 XT-20PL-20, AZ® 40 XT
 - AZ® 5209, AZ® 5214
 - Ti 35ESX, Ti 85Lift-X
 - AZ® nLOF 2000, AZ® nLOF 2020, AZ® nLOF 2035
 - AZ® nLOF 5500, AZ® nLOF 5510

Inorganic Developers

- **AZ® Developer** is based on sodium phosphate and –metasilicate, is optimized for minimal aluminum attack and is typically used diluted 1 : 1 in DI water for high contrast or undiluted for high development rates. The dark erosion of this developer is slightly higher compared to other developers.
- **AZ® 351B** is based on buffered NaOH and typically used diluted 1 : 4 with water, for thick resists up to 1 : 3 if a lower contrast can be tolerated.
- **AZ® 400K** is based on buffered KOH and typically used diluted 1 : 4 with water, for thick resists up to 1 : 3 if a lower contrast can be tolerated.
- **AZ® 303** specifically for the AZ® 111 XFS photoresist based on KOH / NaOH is typically diluted 1 : 3 - 1 : 7 with water, depending on whether a high development rate, or a high contrast is required.

Metal Ion Free (TMAH-based) Developers

- **AZ® 326 MIF** is 2.38 % TMAH- (TetraMethylAmmoniumHydroxide) in water.
AZ® 726 MIF is 2.38 % TMAH (TetraMethylAmmoniumHydroxide) in water, with additional surfactants for rapid and uniform wetting of the substrate (e.g. for puddle development)
AZ® 826 MIF is 2.38 % TMAH (TetraMethylAmmoniumHydroxide) in water, with additional surfactants for rapid and uniform wetting of the substrate (e.g. for puddle development) and other additives for the removal of poorly soluble resist components (residues with specific resist families), however at the expense of a slightly higher dark erosion.

Our Removers: Application Areas and Compatibilities

AZ® 100 Remover is an amine solvent mixture and standard remover for AZ® and Ti photoresists. To improve its performance, AZ® 100 remover can be heated to 60 - 80°C. Because the AZ® 100 Remover reacts highly alkaline with water, it is suitable for this with respect to sensitive substrate materials such as Cu, Al or ITO only if contamination with water can be ruled out.

TechniStrip® P1316 is a remover with very strong stripping power for Novolak-based resist resists (including all AZ® positive resists), epoxy-based coatings, polyimides and dry films. At typical application temperatures around 75°C, TechniStrip® P1316 may dissolve cross-linked resists without residue also, e.g. through dry etching or ion implantation. TechniStrip® P1316 can also be used in spraying processes. For alkaline sensitive materials, TechniStrip® P1313 would be an alternative to the P1316. Nicht kompatibel mit Au oder GaAs.

TechniStrip® P1331 can be an alternative for TechniStrip® P1316 in case of alkaline sensitive materials. TechniStrip® P1331 is not compatible with Au or GaAs.

TechniStrip® N555 is a stripper with very strong dissolving power for Novolak-based negative resists such as the AZ® 15 nXT and AZ® nLOF 2000 series and very thick positive resists such as the AZ® 40 XT. TechniStrip® N555 was developed not only to peel cross-linked resists, but also to dissolve them without residues. This prevents contamination of the basin and filter by resist particles and skins, as can occur with standard strippers. TechniStrip® N555 is not compatible with GaAs.

TechniClean® CA25 is a semi-aqueous proprietary blend formulated to address post etch residue (PER) removal for all interconnect and technology nodes. Extremely efficient at quickly and selectively removing organo-metal oxides from Al, Cu, Ti, TiN, W and Ni.

TechniStrip™ NFS2 is a highly effective remover for negative resists (liquid resists as well as dry films). The intrinsic nature of the additives and solvent make the blend totally compatible with metals used throughout the BEOL interconnects to WLP bumping applications.

TechniStrip™ Micro D2 is a versatile stripper dedicated to address resin lift-off and dissolution on negative and positive tone resists. The organic mixture blend has the particularity to offer high metal and material compatibility allowing to be used on all stacks and particularly on fragile III/V substrates for instance.

TechniStrip™ MLO 07 is a highly efficient positive and negative tone photoreist remover used for IR, III/V, MEMS, Photonic, TSV mask, solder bumping and hard disk stripping applications. Developed to address high dissolution performance and high material compatibility on Cu, Al, Sn/Ag, Alumina and common organic substrates.

Our Wafers and their Specifications

Silicon-, Quartz-, Fused Silica and Glass Wafers

Silicon wafers are either produced via the Czochralski- (CZ-) or Float zone- (FZ-) method. The more expensive FZ wafers are primarily responsible for very high-ohmic wafers (> 100 Ohm cm) are required.

Quartz wafers are made of monocrystalline SiO$_2$. main criterion is the crystal orientation (e.g. X-, Y-, Z-, AT- or ST-cut)

Fused silica wafers consist of amorphous SiO$_2$. The so-called JGS2 wafers have a high transmission in the range of \approx 280 - 2000 nm wavelength, the more expensive JGS1 wafers at \approx 220 - 1100 nm.

Our glass wafers, if not otherwise specified, are made of borosilicate glass.

Specifications

Common parameters for all wafers are diameter, thickness and surface (1- or 2-side polished). Fused silica wafers are made either of JGS1 or JGS2 material, for quartz wafers the crystal orientation needs to be defined. For silicon wafers, besides the crystal orientation (e.g. 100- or 111-) the doping (n- or p-type) as well as the resistivity (Ohm cm) are selection criteria.

Prime- , Test-, and Dummy Wafers

Silicon wafers usually come as „Prime-grade“ or „Test-grade“, latter mainly have a slightly broader particle specification. „Dummy-Wafers“ neither fulfill Prime- nor Test-grade for different possible reasons (e.g. very broad or missing specification of one or several parameters, reclaim wafers, no particle specification) but might be a cheap alternative for e.g. resist coating tests or equipment start-up.

Our Silicon-, Quartz-, Fused Silica and Glass Wafers

Our frequently updated wafer stock list can be found here: www.microchemicals.com/products/wafer/waferlist.html

Further Products from our Portfolio

Plating

Plating solutions for e.g. gold, copper, nickel, tin or palladium: www.microchemicals.com/products/electroplating.html

Solvents (MOS, VLSI, ULSI)

Acetone, isopropyl alcohol, MEK, DMSO, cyclopentanone, butylacetate, ... www.microchemicals.com/products/solvents.html

Acids and Bases (MOS, VLSI, ULSI)

Hydrochloric acid, sulphuric acid, nitric acid, KOH, TMAH, ... www.microchemicals.com/products/etchants.html

Etching Mixtures

for e.g. chromium, gold, silicon, copper, titanium, ... www.microchemicals.com/products/etching_mixtures.html
Further Information

Our Photolithography Book and -Posters

We see it as our main task to make you understand all aspects of microstructuring in an application-oriented way. At present, we have implemented this claim with our book *Photolithography* on over 200 pages, as well as attractively designed DIN A0 posters for your office or laboratory. We will gladly send both of these to you free of charge as our customer (if applicable, we charge shipping costs for non-European deliveries):

Thank you for your interest!

Disclaimer of Warranty & Trademarks

All information, process descriptions, recipes, etc. contained in this book are compiled to the best of our knowledge. Nevertheless, we cannot guarantee the correctness of the information. Particularly with regard to the formulations for chemical (etching) processes we assume no guarantee for the correct specification of the components, the mixing conditions, the preparation of the batches and their application.

The safe sequence of mixing components of a recipe usually does not correspond to the order of their listing. We do not warrant the full disclosure of any indications (among other things, health, work safety) of the risks associated with the preparation and use of the recipes and processes. The information in this book is based on our current knowledge and experience. Due to the abundance of possible influences in the processing and application of our products, they do not exempt the user from their own tests and trials. A guarantee of certain properties or suitability for a specific application cannot be derived from our data. As a matter of principle, each employee is required to provide sufficient information in advance in the appropriate cases in order to prevent damage to persons and equipment. All descriptions, illustrations, data, conditions, weights, etc. can be changed without prior notice and do not constitute a contractually agreed product characteristics. The user of our products is responsible for any proprietary rights and existing laws.

Merck, Merck Performance Materials, AZ, the AZ logo, and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany.

MicroChemicals GmbH
Nicolaus-Otto-Str. 39
89079, Ulm, Germany
Fon: +49 (0)731 977 343 0
Fax: +49 (0)731 977 343 29
e-Mail: info@microchemicals.net
Internet: www.microchemicals.net